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Abstract. A new method for the numerical evaluation of slowly convergent or even divergent
series involving the Hermite functions ¢,,(x) =(2"m7) Y2 e ~/2H,(x} is presented.
We consider series with either of the forms F(x)=Z%2_s tuilin(x/v2) and G{x,y}=
2% 0 Cotlre (X /2, (v/ V), where ¢,, decays algebraically as m - co. The first series is a
Fourier-Hermite series, while the second arises in the representation of Green functions
for problems whose eigenfunctions involve the Hermite functions. By use of the Poisson
summation formula, we derive rapidly convergent asymptotic expansions for the remainders
of these series after a sufficiently large number of terms. The series can then be evaluated
as a partial sum plus an asymptotic approximation to its remainder. The asymptotic
expansion for the remainder of G{x, y) also reveals the nature of the possible singular
behaviour of this series near x = y.

1. Introduction

Although the Hermite functions ¢,,(x) = (2"m!V7) 2 e */2H,.(x) constitute a com-
plete orthornormal set, the Fourier-Hermite expansion of a given function may con-
verge slowly, or even diverge, requiring the use of summability methods (Hardy 1956,
Wimp 1981) for its evaluation (Markett 1984, Thangavelu 1989). This paper describes
a new method for the numerical evaluation of functions defined by their Fourier-
Hermite expansions, which is applicable when the coefficients ¢,, in the expansion

Fx)= 5 cntin(x/V2) (1)

decay algebraically with m as m — <¢; this choice of coefficients is motivated by existing
applications of Fourier-Hermite series in geophysical fluid dynamics, in which x
represents latitude {Moore and Philander 1977). The basic idea of the present method
is to transform the Mth remainder of (1.1},

o0
Ru(x)= I culhm(x/V2) (1.2)
m=M
using the Poisson summation formula (Henrici 1977), and to evaluate the transformed
series asymptotically for large M, yielding an explicit and rapidly convergent expansion
for the remainder (1.2). An estimate is also obtained for the range of values of M in
which the asymptotic expansion for R (x) is valid. Thus, we propose to evaluate the

Fourier-Hermite series as

M -~
F{x)= ZO CntWm (X/V2) + Rps(x) (1.3)
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910 P R Holvorcem

where Ry, (x) is an asymptotic approximation to the remainder {1.2). The method is
able to treat convergent and divergent expansions simultaneously, since all divergent
series and integrals which occur in the analysis to be presented below are evaluated
by Abelian summability methods (Hardy 1956).

The present analysis somewhat resembles the spirit of Nussenzveig’s (1965) study
of high-frequency scattering by a rigid sphere; there, Poisson’s formula and residue
integration are employed to improve the convergence of a partial wave expansion of
the wavefunction, which then becomes amenable to asymptotic analysis. Poisson’s
formula also proves very effective in accelerating the convergence of crystal lattice
sums {Wimp 1981).

In this paper, we also consider series of the form

G 3)= T cnbm(x/VDn(y/VD) (14)

which arise in the representation of Green functions and harmonically forced solutions
of the equations of motion of a barotropic equatorial ocean (Vianna and Holvorcem
1991). The eigenfunctions of these equations can be written in terms of Hermite
functions (Moore and Philander 1977). In this context, the series describing the
wavefields due to either a point oscillating source or a forcing distributed as a plane
wave are slowly convergent or even divergent. An asymptotic expansion to the Mth
remainder of (1.4) is derived in the case of algebraically decaying coefficients ¢, a
choice which turns out to be adequate for the above-mentioned applications (Vianna
and Holvorcem 1991). The resulting asymptotic expansion can again be used both for
convergent and divergent series of the form (1.4).

In the context of representation of Green functions, it is often important to know
the nature of the possible singular behaviour of G(x, y) as x > y. A nice feature of the
present method is that, besides allowing the numerical evaluation of G(x, y), the
asymptotic expansion for the remainder of (1.4) yields explicitly all the singular terms
which contribute to G(x, y} as x— y. Thus, writing

G(x:y)zasing(x:y)+g(xsy) (15)

where Gging(x, y) has a singularity at x=y and g(x, y} is bounded, it is possible, for
exampie, to evaluate singuiar integrals involving the Green function (Vijayakumar and
Cormack 1988, 1989). This result is particularly useful in the numerical solution of
boundary value problems by boundary integral equations {(Holvorcem and Vianna
1991).

The present approach to the summation of series is related to a general method of
Wimp (1974} for finding asymptotic expansions for the remainder R, of a series whose
general term a,, itself admits an asymptotic expansion d,,, as m - . This method is
based on substituting a general asymptotic expansion Ry with undetermined
coefficients in the difference equation

Rysi—Ry=-ap~—dy (1.6}

expanding Ry, in terms of functions with argument M instead of M +1, and finally
equating the coefficients of the various functions of M appearing on both sides of
(1.6) to determine the coefficients.

The results in sections 2 and 3 on the remainder of F(x) could alternatively be
derived by a slightly modified version of Wimp’s method, instead of using Poisson’s
formula. However, when treating the remainder of G(x, y) (section 4), it will turn out
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that Wimp’s method does not yield the correct behaviour of the series as x » y, which
limits the validity of the resulting expansion to sufficiently large |x —y|. This difficulty
does not oceur in the present method, where different asymptotic expansions naturally
arise depending on the magnitude of the difference (x — y) and the point of truncation
M the expansions presented in this work for the remainder of G(x, y) are vaiid for
arbitrary values of (x, y).

2. Asymptotic expansion for the remainder of F(x)

In this section, we study the behaviour of the terms of (1.2) when M is large, and use
this information to derive an asymptotic expansion for the remainder R,,(x) in terms
of certain ‘auxiliary series’, which are asymptotically evaluated in section 3.

The Hermite functions may be written in terms of Weber parabolic cylinder functions
U(a, x) (Abramowitz and Stegun 1965) as

Yu(x/V2)=(m V) 2 U(-m, x) (2.1)

where m = m+1/2. Uniform asymptotic expansions for U{a, x)as a » ccinthe complex
plane are available either in terms of elementary functions or in terms of Airy functions
(Olver 1959). When a = —m —» —c0, the former expansions are valid for |7| <1, where

r=x/2m"? (2.2)

that is, for x between the turning points x = £2r"/? of the mth-order Hermite function
{Olver 1974). On the other hand, the expansions in terms of Airy functions are valid
for r>—1, which includes one turning point, and, by the symmetry of the Hermite
functions, the whole range —oc < x <0, For simplicity, in spite of this wider range of
validity of the Airy expansions, we shall work here with expansions in elementary
functions. The expansion of interest here, valid if m -+ and |7|<1, is (Olver 1959):

U(-rt,x)~b,(1- 72)”“{[1 +0O(rm~ )] cos[2mA(T) ~ /4]

+ [E;?ﬁw(ﬁrm)] sin[2/mA(r) - fr/4]} (2.3)

where o ) )
s 1 .

bm~\/§e—m/‘2m(m 1;’2)/2[1_28_';1_}_0("1 2)] (2-4)
) A(r)=3i[cos™" T—r{1—-7")"7]. _ (2.5)
We have -

.ei[lrﬁA(r}—w,’ﬂ = im e—ip(r?l,x) (26)
where

p(i, x)=m[sin™ 7+ r(1— 15?3 (2.7)

and 7 is given by (2.2). The limit m - o for a fixed x corresponds to 7= 0. In this
case, we may expand the factor (1—7°)""*in (2.3) in powers of 7, and substitute (2.4)
and (2.6) into (2.3), to get

2 .
U(_n-:!,x)~2—l/2 e—rﬁ/Z,ﬁ(rﬁ—l/Z)fZ Z ium e—i,up(rﬁ.x) [1 +3x —‘.' 1 _l_p,x—-l- ]

et 48m  lem*>*

(2.8)
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The Stirling approximation for the factorial appearing in (2.1) is (Olver 1959)

(m)™"2~(2a) "/ e""f’2pﬁ-""f2[1 +—481n~1 +0(n'r2)] (2.9)

valid for m > 1. Using (2.8) and {2.9) in (2.1) we get an asymptotic expansion for the
mth-order Hermite function:

Y (X/VI) ~ (872) VA ¥ jam e-‘f*ﬂ""-*’[u X _iwx ] (2.10)

= 16m 162 "

The above expansion is valid if
m>»1, x*/4. (211

We note that (2.11) implies that the second and third terms in brackets in (2.10) are
respectively much smaller than and §. Thus, they will always represent small corrections
to the leading order behaviour.

Now, to use (2.10) in the derivation of an asymptotic expression for the remainder
Rys(x), it is necessary to assume some definite behaviour of the coefficients c,, for
large m. In the following we shall suppose that c,, decays algebraically with m as m » o,

€ =1"" (2.12)

for some constant 8, and denote F(x) and Ry, (x) as F5(x) and R, (8, x), respectively.
A slightly more general case, in which ¢, has an asymptotic expansion

C~ M B Ao+ AT+ A,m T+ ) (2.13)

with 8, A; and & constants, then clearly reduces to the calculation of Ry, (B, x), Ry (8 +
a, X), etc.

Substituting (2.10) and (2.12) into (1.2}, one easily obtains the following asymptotic
expansion for the remainder of (1.1):

Ru(B, x)~ (2/1772)1/4 Re ¥ "; ‘j+2B+1,’2 (2.14)
=0

where the first F; are given by

Fo=1 F=0 F,=x%16 F;=x/16i (2.15)
and A, denotes the ‘auxiliary series’

A= Y mmeriethx) (2.16)

m=M

By (2.11}, the expansion (2.14) is valid if

M>»1 x*/4 (217)

From the arguments given following (2.11), we conclude that the series (2.14) may for
numerical purposes be truncated at a low value of j. However, depending on the value
of B, the series A;.;5.,,2, Whose terms decay in magnitude algebraicaily with m, may
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converge very slowly or even diverge. Therefore, to use (2.14) to evaluate the remainder
it would be desirable to have a method to compute (2.16) when M - oo, other than
direct term-by-term summation. Such a method is developed in the next section from
asymptotic considerations.

3. Auxiliary series

In this section we derive an asymptotic expression for the auxiliary series A, with the
aid of the Poisson summation formula (Henrici 1977). If f(t) is a complex-valued
function of the real variable ¢, then Poisson’s formula states that

I fm=jim ¥ ], G3.1)
where
f.= J‘w e~ 2mL (1) dt (3.2)

denotes the Fourier transform of f. Poisson’s formula is valid provided f is absolutely
integrable, of bounded variation, and for all ¢, satisfies the relation

F()=4 lim f()+4 Jim £(0). (3.3)

The series A, is absolutely convergent only for Re r>2. In order to transform A,
by Poisson’s formula for an arbitrary value of #, we will interpret the sum of A, in an
Abelian sense (Hardy 1956). Define

i exp[—el(D+imt/2—ip(f, x)] t>M
F(ey={ H"M "2 exp[—ef (M) ~ip(M,x)] t=M (3.4)
0 . t<M

where ¢ >0, {=t+1/2 and the function () tends to +00 as ¢ > oo, Let us also assume
that £(f) has a convergent expansion

(= i"”(l+%+%+...) (3.5)

s0 that
ip(F,x)+el(f)= "‘/2(7+1;,1+%+...)

=y +ig(s, T, x) (3.:6)

y=ix+e v, = x>/ 24i+ ¢, 3.7

and (g, §, x)»0 as t—>co. The function f(¢) satisfies the hypotheses of Poisson’s
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formula, and it follows from (3.1) and (3.4) that

A, = 1M TTHM g et lim lim Z 1. (3.8)
e’ N=oo (T

where A, is taken in the sense of the Abelian summability method (A, A,,), with
Ay ={(m) (Hardy 1956). In view of (3.5), this method is clearly equivalent to the
Abelian method (A, m'/?). The summability of A, by this method can be proved in
two steps. First, Hardy (1956 p 141) showed that the series = m~" exp[aim'/*] (a real
and non-zero) is summable by the Cesaro method (C, k) for some k, and hence
summable by the Abelian method (A, m); his argument can be readily modified to
prove the (A, m) summability of A, (and also of the series B, and C,, to be defined
in section 4). Second, a theorem of Cartwright (Hardy 1956 p 381) allows us to deduce
(A, m'/?) summability from (A, m) summablllty for A,, B, and C,.

Next, we will derive an asymptotic expansion for f in inverse powers of M2,
valid in some neighbourhood of £ =0 and for all integers n. Then, we will obtain from
(3.8) an asymptotic expansion for the Abelian sum of A,, also in inverse powers of M2,

The Fourier transform of f is given by (note that n, M are integers)

fn = J. =2 exp[—2mint — el () —ip(i, x)] dt

M
=2(—1)" e”i7/4 J iy s'Trexp[—2miAs® — ef(sY) —ip(s?, x)]ds (3.9)
Ml 2

where i=n—1/4 and s ={"?. Using (2.17), we may compare the terms in the exponen-
tial in (3.9):

|E§(52)+1p(5 x)l || max Sin—17+(1_72)1/2 +0(e)
|27rifs?| 47r|n{s 0=r=1 T

=< iljllﬁ+0(s)« —+0(e). (3.10)
.

Thus, for small &, —2#ifs® is the dominant term in the exponential in (3.9), for all
s=M"?* and for every integer n. This indicates that an asymptotic expansion for f,,
may be obtained by integration by parts (Olver 1974). To this end, let us define the
variable

1/2

z=2z(s)=28"2s+y/2miA"% (3.11)

The integral {3.9) then becomes
fo=2(—1)" exp[—im/4—iy*/8mi] J Y s' " exp[—imz(s)?/2~id(e, 5%, x)]ds.  (3.12)
Ml 2

To integrate (3.12) by parts, we will make use of the known Fresnel integral (Abramowitz
and Stegun 1965)

v

where ((z) is a function with the following asymptotic behaviour as z—>c0 with
larg z| < =/2:

Q(z)~ (wz2) '[1+i/ w22 -3/ (mz*)+.. . ]. (3.14)
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Integrating by parts repeatedly, with the aid of (3.13), one obtains the formal expansion

J.“D ) 5177 exp[—imz(s)’ /2 -ig (g, 52, x)] ds

il

__1Q(z(s)) expl—imz(5)*/2—ig(e, 5*, )]

2725
x{1+'02( 1(,2) (qb(s x)+——1-)
QD o ((i6(er 0472
{iee-) '
—2ﬁ”2%§(z(s) (1¢ (g, §* x)+—-s~1—):|+...} ::)/ (3.15)

where ¢'(e, 5%, x) =(3/3s) (e, s°,x) and ¢"(e, 5% x)=(3%/as")p(e, 5%, x). Since
Re(—imz(s)?/2)~ —Re(ys) = —gs > — as s >0, the right-hand side of (3.15) vanishes
at the upper limit of integration; at s = M2 the expansion can be simplified by using
(3.6),(3.11) and (3.14), and expanding the i mverse powers of z{ M%) in inverse powers
of M'/* The expansion (3.14) can be used with z = z(M'/?) because

Zwln”rl
IZ(M1.’2)|>2[ 11/2Ml.’2|-1 _lnllr/{i_ﬁ_ﬁ"l_f?!

d
azjﬁlmﬂ”z[]-——s—"" +O(s):l
ax(A[M'
2
» 1—;—+O(s) (3.16)

and we can ensure that |arg z(M"?)| < m/2 by choosing A"/? = —i|#|"/? for A< 0. With
these transformations, (3.15) and (3.12) yield the following expansion for f,:

i*1exp[— e((M)—lp(M x)] iy 1 /. R |
72 1+——= Bt ir———] =
2mAM 4aM 4R 4o/ M

fAn"'
1 ¥ 1y . ] 1 1

—_—— +2r+1 )+ et

4R |:41'rn (41rn r 1) U WEE (4mr)?

I: Y 3(r+ )iy
(47i)? 4

—-(r2+2)+2y1'y:|idalr2-+...}. (3.17)

The right-hand side of (3.17) can be summed over n by using the identity (Henrici
1977)
N 1 dk
lim —— =~ COt W k=0,1,2,... 3.18
N—-OO,,=Z_N (n__w)k+l dwk LR el | ( )
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with w=1/4. Poisson’s formula then yields

§ i" exp[—&{(m) —ip(m, x)]

rﬁr,"l

M exp[—ef(M) —ip(M, x)] 1 1. 1
szM'fz - {(H APy 1\;"2 ("Z"z)ﬁ

1] 5i i
+o | =Y - (r DY -i(FP+2) - ——=+... 1. .

s [48 Y = (r+ 1)y =il(r'+2) 2717]] et } (3.19)
Setting £ = 0 in this expression, we obtain with the aid of (3.7) the asymptotic expansion
for the Abelian sum of A, that we are seeking:

A, ~= MM g ieth0) {(1 +i) HixM T2+ i r+ LM

1
2
+f[(2r+1)+1ix2] Yk

8 2

+% [j—sx +(r+1)x*=~i(#? +2)}ﬂ7[ 2+...}. (3.20)

This result can also be obtained following Wimp’s method by substituting

Gy = M T73M gmie(itx) Ry =M™ e Pk L KM+, ) (3.21)

Table 1. Computation of A, for x = 8 and M =48, using {3.19) with £=0. Successive rows
in the table give the value of the expansion (3.19) truncated at order M~*/2, k=0,1,2, 3, 4.

k Value of (3.19)

0 0.000 301 - 0.002 072i
1 0.000983 —0.002 580i
2 0.001 151 —-0.002 763i
3 0.001 245 - 0.002 871i
4 0.001 281 - 0.002 923}

Table 2. Asymptotic evaluation of Fg(x), for (a) 8=3/4, x=10and () B =0, x=4. Sece
text for the meaning of each row,

(a) (b)
M 75 85 12 16

Partiai sum 0.2254 0.2466 1.262 1.824
ji=0,1 0.2370 0.2389 1.629 1.693
j=2 0.2376 0.2383 1.660 1.684
i=3 0.2376 0.2383 1.660 1.682
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in (1.6) and finding the constants & and K,. Wimp’s original formulation prescribed
the use of the first-order term M"/x instead of p(M, x) in (3.21). However, it can be
seen from (3.6) that this would introduce terms O(x*/ M) in the expansion for A
such terms may become large if we assurne only condition (2.17). Hence the resulting
expansion would converge more slowly than (3.20).

A numerical example of the use of (3.19), with r=3, is given in table 1. In this
example, note that the chosen truncation (M =48 for x=8) is consistent with {2.17).
For comparison, the value obtained by summing (2.16) directly up to m=1233 (such
a high value of m is necessary, due to the slow convergence of the series) is A, =
0.001 294 —0.002 988i. In table 2, {3.19) is used in (2.14) to compute some values of
Fg(x). The first row of the table gives the value of (1.1) truncated at m=M —1, and
the remaining rows give the effect of successively adding the terms j=0,1,2,3 of
(2.14). To check the correctness of the computation we compute Fﬁ(x) for two different

yaliiag af AL whish Tem #nhila \ R ¥ mnAd tha landin
¥OaLUGD UL ire WllLUll ﬂl‘- UU!IBLBL'C&}\. Wl‘.ll \L 1 l ) 1333 \.GUIC L\u P - .).f"? ﬂ.ll\.l \.11(« lﬁﬂ\lllls

order term in (2.14) will involve the series A,, whose general term is O(m ') =
O{(Am=Am-1)/ A} (recall that A,, = {(#1) = O(m'?)). Since A, is summable (A, A,),
this implies that A, (and hence F;,4(x)}) is conditionally convergent {Hardy 1956 p 161).
An application to a divergent Hermite series, Fy(x), is shown in table 2(b). Numerical
experiments with (2.14) and (3.19} indicate that Fgz(x) can be computed with an error
of a few per cent by taking M =3 max{1, x*/4}.

4. Asymptotic expansion for the remainder of G(x, y)

Series of the form (1.4) may be treated by asymptotic techniques similar to those
developed in the two previous sections. For definiteness, let us consider again the case
where ¢, is given by (2.12), and let us write G, (x, y) for G{x, y) and Qu(8, x, ) for
its ‘Mth remainder. Using (2.10) in (1.4), one finds an asymptotic expansion for

QM(B’ X, .V):

QM(.Bsx y)~(2ﬂ'2) 12 Re 2 (Q'BJ+2a+|+HCJ+2ﬁ+|) (4.1)

i=0

Here the first G; and H; are

Gy=H,=1 G, =H =0 Gy=H,={(x"+y%)/16 42)
G, =(x+y)/16i H,=(x—y)/16i '
and B, and C, denote the ‘auxiliary series’
= ¥ i~ H(=1)" exp{—=i[p(rh, x)+p (i, )]} {4.3)
m=M
Cr: 2 ﬁ’,l*ri'l exp{_i[P("-‘a x)—p(rﬁ, y))}' (4‘4)

m=M
By (2.11), the expansion (4.1) is valid for
M »1,x%/4,y%/4. (4.5)

To derive an asymptotic expansion for B,, analogous to (3.19), one can proceed
in complete analogy with the treatment given for the series A,. Defining a function
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g(r) by
(" expl-ed (D) +imt =ilo(F,x)+ p(7, )]} t>M
o t<M

with £>> 0 and £(7) given by (3.5), we will have

ilp(7, %)+ p(F, )1+ eg(f) =T (n+"1+ ; )

ni/ 2 +i8(e, T, x, y) 4.7)

where the first coefficients n; are

n=i(x+y)+e nm=(x*+y*)/24i+ ¢, (4.8)

and 0(g, i, x, y}=0 as t>00. Applying Poisson’s formula to the function g, we can
modify slightly the asymptotic arguments of section 3 to get the result

(=™ exp{—el(m) —ilp(ri, x) + p(r, y) 1}

@
)
m=M

n':"’z

(=1 exp{- e{ (M) —i[p(M, x)+ p(M, y)]}

2Mr,n’2

n ro1(1 ) 1 (r+1)7? }
14—t —m—— | — 3+ s ——=—t+... . 49
{ aM72 M 4(4817 MM 6ant? (49)

When £ =0, the above expansion is asymptotic to the (A, A,.} sum of B,. In table 3,
this expansion is employed to evaluate B; for x = 6, y =4, M = 27. The direct summation
of (4.3) up to m = 1098 gives the approximate value B;= —0.003 265~0.002 419i.

Table 3. Computation of B, for x =6, y =4, M =27, using (4.9} with £ =0. The meaning
of each row is the same as in table 1.

k Value of (4.9)

0 —0.003 424 —0.000 544i
1 —0.003 165—0.0602 176i
2 —0.003 258 ~0.002 1911
3 —0.003 223 - 0.002 384i
4 —0.003 256 —0.002 389i

The auxiliary series C, can also be evaluated with the Poisson summation formula,
but the argument here is more subtle, as we shall see shortly. Defining the function

h(t) by

hity=

™" exp{-ef (D) —ilp(f, x) - p(, )] t>M
W1KT~/% exp{—ef(M) —i[p(M, x)~p(M, )]} t=M (4.10)
0 t<M



Asymptotic summation of Hermite series 919
with £>0 and {(f) again given by (3.5), we can write

i{p(F, x) = p(F )] +el(D = m(§+§1+§22+ )

=& 4iw(e, T x, ) (411)
where the first coefficients ¢; are
E=i(x-y)+e £ ={(x*—y)/ 24i+ el (4.12)
and w(e, f, x, ) >0 as t> 00,
The series

SM #i"/2 exp{—e{ (i) —il p(rt, x) — p(1it, y) I}

= E rﬁfr/zexp[—Erﬁlnﬁiw(s, m, x, y)]
m=M
= T dyexpl—&i) = D(&) (4.13)

can be regarded as a Dirichlet series, whose abscissa of convergence 8 is obviously
zero. Since arg d,, - 0 as m > cc, it follows that £ =& = 0 is a point of non-continuability
of the Taylor expansion of D(£} with centre at any point in the half-plane Re £>0
(Saks and Zygmund 1971). This implies that the Abelian sum of C, (and therefore
that of Gs(x,y)) may be non-analytic at x =y. This is in contrast to the series B,,
which by (4.9) is an analytic function of (x, y) for alit r. In fact, we shall see below
that, for all r, C, 1s analytic everywhere except for x = y.

Proceeding with the asymptotic calculation of C,, the Fourier transform of
can be written as

hii)

B, = 2(=-1)" J ) s' " exp{—2mins® — e (s%) —i[p(s* x) - p(s%, ¥)]} ds (4.14)
Ml 2

where s = /2. Now, it can be verified using (3.10) that for small ¢ the term —2mins®

will be dominant in the exponential in (4.14), but only for n #0. In this case, one can

use integration by parts to determine the asymptotic behaviour of h,, exactly as in

section 3. The result is an expansion identical to (3.17), wherein the leading factor i*

is dropped, and the replacements

[p(Msx)’ ﬁ! Y Y]s-“]-)[p(ﬂs x)_p(Msy)’ n, gsgh'“]

are made. Using the well known sums

2
w

= ‘;;l = — (415

ir8

one easily verifies that

- {—ef(M) —i[p(M, x) —p(M, )]}
o - et

n#o
3 r 1 1 (r-}-l){E2
X {‘*M'uz‘*‘—ﬁ— (aa §3+ 51) T_M3/2__'—‘—80M2 +..00. (4.16)
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The term

I;0=2J’ s'7" exp[—&s —iw(e, 5%, x, ¥)1 ds (4.17)

Ml/l

will give rise to the non-analytic behaviour of C, at x = y, and must be treated separately.
If we take (4.5) to mean

M = K max{1, x*/4, y*/ 4} (4.18)

with K > 1 a constant, then for 1 = M we have the estimate

(0, £, x, )| <|x—y| max

xEwWsy

ad
o (0, t, w)l

max{x>, y°} _
Six—yl% max 7 [1-(1-79)"7]

o<re K
=[1-(1-K"H3X| (4.19)

where
X =M% (4.20)

Thus, for | X| bounded we can evaluate h, numerically from the convergent expansion

ﬁo-—-z'[ e ¥ Y gus " ds=2 § g.£"TT(2-n-r,X) {(4.21)
n=0 n=0

FYakd

where I'(a, X) denotes the incompiete gamma function (Abramowitz and Stegun 1965)
and the g, are the coefficients in the expansion of e in powers of 57" (see (4.11)),
listed in the appendix. From the properties of I'(a, X), it can be shown that each term
of (4.21) is non-analytic at & =0, in accordance with a previous remark in this section,
For simplicity, we will discuss only the case where 28 is an integer, so that by (4.1)
we need only consider the C, for integer r. To evaluate {4.21), we may then note that
I'(a, X)is given in terms of elementary functions fera =1, 2,. .. ; thatI'{0, X') = E,( X},
the exponential integral; and that the T'(a, X), a=—1, -2, ..., may be obtained from
I'(0, X} by the recurrence relation

MNa-1,X)=(a~1)"[T'(a, X)-X*"'e"*]. (4.22)

The exponential integral is easily evaluated with a computer (see the appendix) Based
on numerical experiments with {4.21), we have verified that we can compute A, accurate
to a few per cent for [X|=<25 when the expansion is truncated at n =10.

To compute ho when X is large, we may use the following asymptotic expansion,

which follows from (4.17) by iterated integration by parts (Olver 1974):

h 2 eX Z gt a exp[— 1w(re 1s L% ] (4.23)

n= 35 A 5= Mln

When |X|=25, we have verified the numerical agreement between this expansion
truncated at n =3 and (4.21) truncated at n=10. For | X{> 25, ho can be computed
with an accuracy of a few per cent by using (4.23) with the indicated truncation.
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Substituting (4.10) and (4.i6) in Poisson’s formula, we get finally

§ exp{—&d(rh) —i[p(m, x}—p(m, y)1}
m=M ""/2
ot exp{-e{(M)—ilp(M, x)— p(M, 1)1}

. 2M72

£ ro 1 ( ) 1 (r+1)& }
Xy 1+——s+————| — gy — e, L 4.24
{ 12MY2 12M 121240 £+44 MY 960 M7 (424)
where fi, may be computed from (4.21) or (4.23), depending on the value of }X|. The
Abelian sum C, is then given asymptotically by (4.24) with £=0.
We can use (4.21) and (4.24) to find the behaviour of Gz{x, y) as x -+ y. For instance,
when 8 =1/2, we have

Que(l/2,x, )~ J-Re C2+O(1)~£Re I'(o, X3+0(1)

- —gReln X+0(1) ~ —%lnlx—y|+0(1) (4.25)

because I'(0, X) = E,(X) behaves as —In X as X - 0. Thus, we conclude that G,,.{x, )
has a logarithmic singularity at x=y.

We may compare (4.21), (4.23) and (4.24) with the expansion that would result
from the application of Wimp’s method to the series C,. Setting

dn = M exp{~i[p(M, x)— p(M, y)}}
Ry = M™% exp{~i[p(M, x) - p(M, y)]{ Ko+ K{M "> +...)

in (1.6) and determining 8’ and K}, it is easy to see from (4.11) that 8= (r—1}/2 and
that K, will involve terms proportlonal to {x —y) ""'. In fact, Wimp’s method yields
(4.24) with ho given by (4.23), and thus it fails to describe the behaviour of €, (and
hence of Gy(x, y)) as x- y, which is given by (4.21) and (4.24).

Table 4 illustrates the numerical use of (4.24) with r=3, x=3, y=-2and M =7,
For comparison, the direct summation of (4.4) up to m=6201 gives C;=
0.001 81 —0.055 84i. In table 5 we use (4.1), (4.9) and (4.24} to compute G,,z(x, y) for
x =1 and y=—1/2. The first row of the table gives the Mth partial sum of (1.4), and
the other rows give the effect of adding the terms j =0, 1, 2, 3 of (4.1). Just as was done
for the example of table 2(a), we can argue that G, ,;(x, y) is conditionally convergent.
Numerical tests of (4.24) indicate that the constant K in (4.18) should be at least 3 in
order to produce results with a relative error of a few per cent.

(4.26)

Table 4. Computation of C; for x=3, y=—-2, M =7, using (4.24) with £ =0. The first row
gives the value of h,, and the meaning of the other rows is as in table 1.

k Value of (4.24)

fo= —0.021 46— 0.045 48i
—0.00097 — 0.058 63i
0.001 03 —0.055 52

0.001 71— 0.055 96i

0.001 82— 0.055 79i

0.001 86 —0.055 81i

R P =]




922 P R Holvorcem

Table 5. Asymptotic evaluation of G,,2(1, —1/2), using two different truncations. See text
for the meaning of each row.

M 3 10

Partial sum 0.4152 0.1835
J=0,1 0.2752 0.2726
j=2 0.2718 0.2731
j=3 (.2722 (4.2732

The main restriction on the use of (4.1) to the evaluation of Ga(x, ¥) occurs when
|x —y| = <0. In this case, Gg(x, ¥) tends to zero very rapidly, while the series (1.4) may
diverge or converge slowly. Therefore, the Mth partial sum of (1.4) (and also the
remainder Qu (B, x, y)) will be much larger than the sum itself, resulting in a large
relative error in the computed G,(x, y) due to cancellation. Of course, this effect is
inherent in any method of summation which evaluates Gg(x, y) as a partial sum plus
an approximate remainder. Thus, a computed Gy{x, y} which is less than a few per
cent of the Mth partial sum of (1.4) is likely to be affected by cancellation, since our
asymptotic expansions usually give B, and C, accurate to a few per cent. This problem

does not oceur with the series (2.14) since F.(v) decave or grows maore glowly than

S BRSNS ek AL mAanw Dwaa LT o PR 14 4L W o) =@V MWehyo Vi o pi ARALN SRR YYLY MELEGRK

Gg(x, y) tends to zero.

The cancellation effect is more severe for the series G(x, y) withg=0,-1,-2,...
because the completeness of the Hermite functions implies that Go(x, y) =v28(x —y),
and Gg(x, y) satisfies the inhomogeneous parabolic cylinder equation (Olver 1974)

2 - X Gﬂ ="G,g-1. (4.27)

Thus, Gg(x,y)=0 for x#y and B=0,—1,-2,..., so that asymptotic summation is
not needed in these cases, When 8 =n=1,2,... we can give a closed-form expressicn
for G,(x, y), which turns out to be too cumbersome for numerical use when n>1.
Consider the meromorphic function

Palw)=(—w)"T(w+1/2) Uw, x}U(w, —y) (4.28}

which has polesatw=0and w=—(m+1/2), m=0, 1, 2, .... The asymptotic behaviour
of p,(w) for large w can be shown to be (Olver 1959)

Pa(w)~ (=1)"(7/2)*w ™"V 2 exp[—(x — y)w''?] larg w| < /2
Pa(w) ~(7/8) /2 (—w)™""/2

cos[w(w+l/2)/2+( w)'*x]cos[m{w+1/2)/2=(—w)"?¥]
sin[w(w+1/2)]

larg(—w)| < =/2. (4.29)

If x > v, we can then assert that the sum of the residues of p.(w}) vanishes, which yields

immediately an expression for G, (x, y):

1" 1 d" 1
Gl 9) = s A (N0 DU U~ (430
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When x->c0 and y is held fixed, we have U(w,x}~x"""Y2e™71+0(x?)]
(Abramowitz and Stegun 1965), which implies that

(__ )n 1 dnkt

Go(x, y)~ al(n )F(I/Z)U(O y)d 7 Ulw, x) o
- Ug“o(,n_)y) (Inx)"'x Y2 ¥4, (4.31)

This expression, though not accurate enough for numerical use, indicates that G, (x, y)
tends to zero faster than any Hermite function #,,(x/v2) as x - o, so that it is not a
surprise that cancellation should take place in this limit.

Finally, we wish to comment that the methods of this paper may be used to evaluate
any derivative of the series F(x) and G(x, y). In fact, the derivative of the Hermite
function of order m has the asymptotic expansion

~ 1/4 2 .
l!l’m(x/\/i)'v%( mz) Y opi#m e—iup(n':,x)[l_ XX L :' (432)

27 win Tom | 1677

which follows by differentiation of (2.10). From this expansion and (2.10) one can
derive, as in section 2 and in this section, expansions for the remainders of
dF../dr A(‘,./R\‘ ete, in terms of the a1 Yll‘lﬂr}l geriec A R and

...- Lnesazaaia Rpy Aey Shaata Sops

{

Appendix | ‘

Here we give expressions for the first coefficients ¢, which appear in (4.21}, and discuss
a simple numerical procedure for the computation of the exponential integral E,{(X).
The coefficients g, are defined by the relation

o
exp[—iw(e, 8%, %, y)1= ¥ gus™" (A1)
n=0
where s = {2, In view of (4.11), we may express ¢, g», ... in terms of £, &,...:
Go=1 hi=—% g=3 & 4= —(&+E6)

4= &(&;+133€)) gs= = (& 1816+ 1htD)
gs = 616 HIEHE6 6+ k8
gr= —(&+36 3+ 166+ 33816 H imtl)
gy = &ifut b5+ 366166+ 06 6+ wmimby
Go= —(&+ E6HETIEE TG HEE 566+ TmE 6 1wt )
10= 66+ EHETIEHIELE T EHIE G ROEE T TREE
+ s0q0é 162t s3d w00 | - (A2)

The exponential integral (Abramowitz and Stegun 1965) may be com

11l Lpitellt il

from its power series

© (=X)"
E(X)=~nX-y- 3 S
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where v is Euler’s constant, or from the continued fraction

eX1 1 2 2k _k
X+ 1+ X+ 1+ X+ "1+ X+

E(X)= (A4)

which is valid for |arg X|< . (This condition is satisfied, since Re X = M'?Ret=
M'%g>0.) By numerical experimentation with both representations, we found that a
uniform accuracy (relative error less than 1%) may be achieved for Re X =0 by using
(A.3) truncated at n =5 when | X| < 0.4, and (A.4) truncated at k =30 when ] X|> 0.4.
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