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Asymptotic summation of Hermite series 

Paulo R Holvorcem 
lnstituto de Matemitica, Estatistica e CiOncia da ComputaGio, Universidade Estadual de 
Campinas, Caixa Postal 6065, 13081 Campinas, SP, Brazil 

Received IO May 1991, in final form I I  October 1991 

Abstract. Anew method forthe numerical evaluation ofslowly convergent oreven divergent 
series involving the Hermite functions *,,,(x) = (2"m!~)~" ' e~" ' / 'H , (x )  is presented. 
We consider series with either of the forms F(x )=ZE-Ocm$, (~ / f i )  and G ( * y ) =  
X Z m 0  cm#m(x/fi)#m(y/fi), where c, decays algebraically as m-w. The first series is a 
Fourier-Hermite series, while the second arises in the representation of Green functions 
for problems whose eigenfunctions involve the Hermite functions. By use of the Poisson 
summation formula, we derive rapidly convergent asymptotic expansions forthe remainders 
of these series after a sufficiently large number of terms. The series can then be evaluated 
as a partial sum plus an asymptotic approximation to its remainder. The asymptotic 
expansion for the remainder of G ( x , y )  also reveals the nature of the possible singular 
behaviour of this series near x = y. 

1. lutroduction 

Although the Hermite functions &(x) = ( 2 " ' m ! f i ) - ' / '  e-"2'2Hm(x) constitute a com- 
plete orthornormal set, the Fourier-Hermite expansion of a given function may con- 
verge slowly, or even diverge, requiring the use of summability methods (Hardy 1956, 
Wimp 1981) for its evaluation (Markett 1984, Thangavelu 1989). This paper describes 
a new method for the numerical evaluation of functions defined by their Fourier- 
Hermite expansions, which is applicable when the coefficients cm in the expansion 

m, 

W)= 1 C,+,(X/JZ) (1.1) 
m=0 

decay algebraically with m as m + m; this choice of coefficients is motivated by existing 
applications of Fourier-Hermite series in geophysical fluid dynamics, in which x 
represents latitude (Moore and Philander 1977). The basic idea of the present method 
is to transform the Mth remainder of ( l . l ) ,  

m 

R M ( x ) =  2 c m + m ( X / J z )  (1.2) 
,-M 

using the Poisson summation formula (Henrici 1977). and to evaluate the transformed 
series asymptotically for large M, yielding an explicit and rapidly convergent expansion 
for the remainder (1 .2) .  An estimate is also obtained for the range of values of M in 

Fourier-Hermite series as 
ahich the asympto!ir ..pansion for R..(.x) i n  va!id: Thus, we propose to eva!uate !h. 

M 

F ( x )  1 cmJI , (x / f i )+  U X )  (1.3) 
"9-0 
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910 P R Holvorcem 

where k M ( x )  is an asymptotic approximation to the remainder (1.2). The method is 
able to treat convergent and divergent expansions simultaneously, since all divergent 
series and integrals which occur in the analysis to be presented below are evaluated 
by Abelian summability methods (Hardy 1956). 

The present analysis somewhat resembles the spirit of Nussenzveig’s (1965) study 
of high-frequency scattering by a rigid sphere; there, Poisson’s formula and residue 
integration are employed to improve the convergence of a partial wave expansion of 
the wavefunction, which then becomes amenable to asymptotic analysis. Poisson’s 
formula also proves very effective in accelerating the convergence of crystal lattice 
sums (Wimp 1981). 

In this paper, we also consider series of the form 

which arise in the representation of Green functions and harmonically forced solutions 
of the equations of motion of a barotropic equatorial ocean (Vianna and Holvorcem 
1991). The eigenfunctions of these equations can be written in terms of Hermite 
functions (Moore and Philander 1977). In this context, the series describing the 
wavefields due to either a point oscillating source or a forcing distributed as a plane 

remainder of (1.4) is derived in the case of algebraically decaying coefficients c,, a 
choice which turns out to be adequate for the above-mentioned applications (Vianna 
and Holvorcem 1991). The resulting asymptotic expansion can again be used both for 
convergent and divergent series of the form (1.4). 

In the context of representation of Green functions, it is often important to know 
the nature of the possible singular behaviour of G(x, y )  as x + y .  A nice feature of the 
present method is that, besides allowing the numerical evaluation of G(x, y ) ,  the 
asymptotic expansion for the remainder of (1.4) yields explicitly all the singular terms 
which contribute to G(x, y )  as x + y .  Thus, writing 

(1.5) 

where Gsin8(x, y) has a singularity at x = y and g(x, y )  is bounded, it is possible, for 
exampie, to evaiuate singuiar integrais invoiving the Green function (Vijayakumar and 
Cormack 1988, 1989). This result is particularly useful in the numerical solution of 
boundary value problems by boundary integral equations (Holvorcem and Vianna 
1991). 

The present approach to the summation of series is related to a general method of 
Wimp (1974) for finding asymptotic expansions for the remainder RM of a series whose 
general term a,,, itself admits an asymptotic expansion LL,, a: m +a. This method is 
based on substituting a general asymptotic expansion RM with undetermined 
coefficients in the difference equation 

(1.6) 

expanding E,,, in terms of functions with argument M instead of M +  1, and finally 
equating the coefficients of the various functions of M appearing on both sides of 
(1.6) to determine the coefficients. 

The results in sections 2 and 3 on the remainder of F ( x )  could alternatively be 
derived by a slightly modified version of Wimp’s method, instead of using Poisson’s 
formula. However, when treating the remainder of G(x, y)  (section 4), it will turn out 

wave are slowly convergent or even divergent, An asymptotic expansion to the Mth 

a x ,  y )  = Gsing(X, Y)+&,  Y )  

R M + ,  - R ,  = -aM - -6, 
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that Wimp's method does not yield the correct behaviour of the series as x + y, which 
limits the validity of the resulting expansion to sufficiently large Ix -y l .  This difficulty 
does not occur in the present method, where different asymptotic expansions naturally 
arise depending on the magnitude of the difference (x - y )  and the point of truncation 
M ;  the expansions presented in this work for the remainder of G(x, y)  are valid for 
arbitrary values of (x, y). 

2. Asymptotic expansion for the remainder of F(x)  

In this section, we study the behaviour of the terms of (1.2) when M is large, and use 
this information to derive an asymptotic expansion for the remainder R,(x) in terms 
of certain 'auxiliary series', which are asymptotically evaluated in section 3. 

The Hermite functions may be written in terms of Weber parabolic cylinder functions 
U(a,  x) (Abramowitz and Stegun 1965) as 

+,(x/Jz) = ( m ! G ) - " 2 u ( - 6 ,  x )  (2.1) 

where riI = m + 1/2. Uniform asymptotic expansions for U (  a, x) as a + m in the complex 
plane are available either in terms of elementary functions or in terms of Airy functions 
(Olver 1959). When a = -6 + -m, the former expansions are valid for 111 < 1, where 

r = x / 2 9 ' / 2  (2.2) 
that is, for x between the turning points x = +261'/~ of the mth-order Hermite function 
(Olver 1974). On the other hand, the expansions in terms of Airy functions are valid 
for ~ > - l ,  which includes one turning point, and, by the symmetry of khe Hermite 
functions, the whole range -m < x < 00. For simplicity, in spite of this wider range of 
validity of the Airy expansions, we shall work here with expansions in elementary 
functions. The expansion of interest here, valid if m + m and 171 4 1, is (Olver 1959): 

U ( - k ,  x)  - b,( 1 - r2)-"'( [l +O( m ) I  C O S [ ~ ~ A ( T ) -  ~ / 4 1  

+ -  [ 1 6 ~ 3 1 2 + ~ ( r i I - 5 ' 2 ) ]  s in [26A(~) -  TI~]] 

where 

and T is given by (2.2). The limit m + m for a fixed x corresponds to T + 0. In this 
case, we may expand the factor (1 - T ) in (2.3) in powers of T, and substitute (2.4) 
and (2.6) into (2.3). to get 

2 - -1/4.  
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The Stirling approximation for the factorial appearing in (2.1) is (Olver 1959) 

valid for m >> 1. Using (2.8) and (2.9) in (2.1) we get an asymptotic expansion for the 
mth-order Hermite function: 

(2.10) 

The above expansion is valid if 

m >> 1, x2/4. (2.11) 

We note that (2.11) implies that the second and third terms in brackets in (2.10) are 
respectively much smaller thana and Q. Thus, they will always represent small corrections 
to the leading order behaviour. 

Now, to use (2.10) in the derivation of an asymptotic expression for the remainder 
R M ( x ) ,  it is necessary to assume some definite behaviour of the coefficients c, for 
large m. In the following we shall suppose that c, decays algebraically with m as m + CO, 

cm = 6-0 (2.12) 

for some constant p, and denote F ( x )  and RM (x) as Fo(x) and R, (p, x), respectively. 
A slightly more general case, in which c, has an asymptotic expansion 

C , - ~ - ~ ( A , + A , ~ - " + A , ~ ~ ~ " + .  . . ) (2.13) 

with p, A, and U constants, then clearly reduces to the calculation of R,(p, x), R,(p + 
U, x), etc. 

Substituting (2.10) and (2.12) into (1.2), one easily obtains the following asymptotic 
expansion for the remainder of (1.1): 

m 

~ , " ) - ( ~ ; n ' j ' ' ~ ~ e  , ,+2o+1/2 (2.i4) 
,=0 

where the first F, are given by 

Fo= 1 F , = O  F2=x2 /16  F3 = x/16i (2.15) 

and A, denotes the 'auxiliary series' 

By (2.11), the expansion (2.14) is valid if 

.._ M >) ~~ !, x2/4. (2.17) 

From the arguments given following (2.11), we conclude that the series (2.14) may for 
numerical purposes be truncated at a low value of j. However, depending on the value 
of p, the series Aj+2B+,,2, whose terms decay in magnitude algebraically with m, may 
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converge very slowly or even diverge. Therefore, to use (2.14) to evaluate the remainder 
it would be desirable to have a method to compute (2.16) when M+m, other than 
direct term-by-term summation. Such a method is developed in the next section from 
asymptotic considerations. 

3. Auxiliary series 

In this section we derive an asymptotic expression for the auxiliary series A, with the 
aid of the Poisson summation formula (Henrici 1977). If f ( f )  is a complex-valued 
function of the real variable f, then Poisson's formula states that 

where 
m 

1. = eC'"'"lf(f) df 
-m 

denotes the Fourier transform off: Poisson's formula is valid provided f is absolutely 
integrable, of bounded,variation, and for all f, satisfies the relation 

The series A ,  is absolutely convergent only for Re r > 2. In order to transform A ,  
by Poisson's formula for an arbitrary value of r, we will interpret the sum of A, in an 
Abelian sense (Hardy 1956). Define 

;-'I2 exp[-&C( i )  + i7rt/2 - ip( i, x)] t > M 
f ( t )  31 M-"' exp[-al(G) -ip(G, x)] t =  M (3.4) la- - f < M  

where E > 0, i= f + 1/2 and the function C( i )  tends to +m as f -f m. Let us also assume 
that 6( i )  has a convergent expansion 

(3.5) 

so that 

ip( i, x)+a l (  i )  = f/' 

(3.7) 

and +(e ,  i, x)+O as f +m. The function f ( f )  satisfies the hypotheses of Poisson's 
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formula, and it follows from (3.1) and (3.4) that 

where A, is taken in the sense of the Abelian summability method (A, A,), with 
A, = C ( 6 )  (Hardy 1956). In view of (3.9,  this method is clearly equivalent to the 
Abelian method (A, m1/2). The summability of A, by this method can be proved in 
two steps. First, Hardy (1956 p 141) showed that the series m - b  exp[aim’”] (a real 
and non-zero) is summable by the Cesiro method (C, k )  for some k, and hence 
summable by the Abelian method (A, m); his argument can he readily modified to 
prove the (A, m )  summability of A, (and also of the series E,  and C,, to be defined 
in section 4). Second, a theorem of Cartwright (Hardy 1956 p 381) allows us to deduce 
(A, 

Next, we will derive an asymptotic expansion for f. in inverse powers of $‘I2, 
valid in some neighbourhood of E = 0 and for all integers n. Then, we will obtain from 
(3.8) an asymptotic expansion for the Abelian sum of A,, also in inverse powers of 

in= J i - ‘ ~ ’ e x p [ - 2 7 r i A t - ~ ~ ( i ) - i p ( ~ x ) ] d f  

summability from (A, m )  summability for A,,-B, and C,. 

The Fourier transform o f f  is given by (note that n, M are integers) 
m 

M 

f i l l ?  SI-‘ exp[-27riAs2-~~(s2)-ip(s2, x)] ds  (3.9) Jm =2(-1)” e - w 4  

where A = n - 1/4 and s =iIi2.  Using (2.17), we may compare the terms in the exponen- 
tial in (3.9): 

(3.10) 

Thus, for small E, -27riris2 is the dominant term in the exponential in (3.9), for a!l 
s 3 and for every integer n. This indicates that an asymptotic expansion for f. 
may be obtained by integration by parts (Olver 1974). To this end, let us define the 
variable 

(3.11) z = z(s) = 2i1‘/2s+ y/27riii1/’. 

The integral (3.9) then becomes 

1. = 2(-1)“ exp[-ir/4 - iy2/87rA] SI-‘ exp[ -im(s)’/2 - $(E, s2, x)] ds. (3.12) 

To integrate (3.12) by parts, we will make use ofthe known Fresnel integral (Ahramowitz 
and Stegun 1965) 

e-inr’/2 dz=iQ(z)  e-iaz2/2 (3.13) 

where Q ( z )  is a function with the following asymptotic behaviour as z+m with 
larg zI s a/2: 

(3.14) 

J 
~ ( 2 ) -  ( m - ’ [  1 + i / ~ 2 ~ - 3 / ( 7 r z ~ ) ~ + .  . . I. 
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Integrating by parts repeatedly, with the aid of (3.13), one obtains the formal expansion 

SI-' exp[-im(s)'/2-i+(~, s2, x)] ds 

I iQ(z(s)) e x p [ - i ~ z ( s ) ~ / 2 - i + ( ~ ,  s2, x)] 
2A1/2s'-1 

where + ' ( E ,  s2, x) = ( J / J S ) @ ( E ,  s2, x)  and @ " ( E ,  s2, x )  = ( J ~ / J S ~ ) + ( E ,  s2, x). Since 
Re(-irz(s)2/2) - -Re(ys) = - E S +  -a as s +a, the right-hand side of (3.15) vanishes 
at the upper limit of integration; at s = the expansion can be simplified by using 
(3.6), (3.11) and (3.14), and expanding the inverse powers of z(fi'") in inverse powers 
of $?'I2, The expansion (3.14) can be used with z = z ( M ' l 2 )  because 

and we can ensure that larg z(A?"~)I < 7r/2 by choosing 
these transformations, (3.15) and (3.12) yield the following expansion for 1,: 

-i[A11/2 for A < O .  With 

(3.17) 

- ine righi-hand side o f ( i . i i j  can be summed over n by using the ideniity (tienrici 
1977) 

(3.18) 1 =--a-cot dk n w  k = 0, 1,2, . . . 
N 

dw lim 1 
N - - . = _ ~  (n-w)'+' 
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with w = 1/4. Poisson's formula then yields 

i" exp[-&b(fi)-ip(fi,x)] L f i 4 2  
m = M  

(3.19) 

Setting E = 0 in this expression, we obtain with the aid of (3.7) the asymptotic expansion 
for the Abelian sum of A, that we are seeking: 

A, -1 fi-rI2iM e- i~ ( f i . . x l  ( 1  +i)  +tixfi-l12+f(r+aix2)fi-1 
2 

M-'+ . . .  , 1 -  I (3.20) 

This result can also be obtained following Wimp's method by substituting 

R, = fi-aii" e - - i p ( f i . x )  (KO+ K, f i - ' I2+ .  . , ) (3.21) ; - f i - r I 2 i M  e- ip( f i ,x )  
M -  

Table 1. Computation of A, for x = 8 and M =48,  using (3.19) with E =O. Successive rows 
in the table give the value of the expansion (3.19) truncated at order kk", k = 0, 1 ,2 ,3 ,4 .  

k Value of (3.19) 

0 0.000?ll! -0,002 072i 
I 0.000963 -0.002 58Oi 
2 0.001 151 -0.0027631 
3 0.001 245-0.002 871i 
4 0.001 281 -0.002 9231 

Table 2. Asymptotic evaluation of F p ( x ) .  for ( a )  p =3/4,  x = 10 and ( b )  p = 0, x = 4. See 
text for the meaning of each row. 

. " ~ -  . ̂ _. Pariiai sum 0.2294 0.2466 ,.ID' 1.11'11 

j = O . I  0.2370 0.2389 1.629 1.693 
j = 2  0.2376 0.2383 1.660 1.684 
j = 3  0.2376 0.2383 1.660 1.682 
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in (1.6) and finding the constacts e and K,. Wimp's original formulation prescribed 
the use of the first-order term M ' / 2 x  instead of p ( f i , x )  in (3.21). However, it can be 
seen from (3.6) that this would introduce terms O ( x 3 / k )  in the expansion for A,: 
such terms may become large if we assume only condition (2.17). Hence the resulting 
expansion would converge more slowly than (3.20). 

A numerical example of the use of (3.19), with r =3, is given in table 1. In this 
example, note that the chosen truncation (M = 48 for x = 8) is consistent with (2.17). 
For comparison, the value obtained by summing (2.16) directly up to m = 1233 (such 
a high value of m is necessary, due to the slow convergence of the series) is A,== 
0.001 294-0.002 9883. In table 2, (3.19) is used in (2.14) to compute some values of 
FB(x). The first row of the table gives the value of ( I .  1) truncated at m = M - 1, and 
the remaining rows give the effect of successively adding the terms j = 0, 1 , 2 , 3  of 
(2.14). To check the correctness of the computation, we compute FB(x) for two different 

order term in (2.14) will involve the series A, ,  whose general term is O(m-')= 
O{(A,, , -A,- , ) /A,J (recall that A, = l(&) = O(m'/2)). Since A, is summable (A, A,,,), 
this implies that A, (and hence F3,4(x)) is conditionally convergent (Hardy 1956 p 161). 
An application to a divergent Hermite series, F,(x),  is shown in table 2 ( b ) .  Numerical 
experiments with (2.14) and (3.19) indicate that Fp(x) can be computed with an error 
of a few per cent by taking M 

..-1.._- I\F I I  ... h:rh --a I\..--:~+--+ ... : rL /I *7\ T- +"L.t.- 11-1 0 - 9 , "  tho I a l l i r l .  
" L L L U C I  V L  11' I I . . L I L L  'U- -"IIr.LIIFIII 1.111 \L.I  ',. 1.1 \a",= &\U) p -.7,-t, all" 11.G 'FaY"'~ 

3 max{ 1, x2/4}. 

4. Asymptotic expansion for the remainder of G(x, y )  

Series of the form (1.4) may be treated by asymptotic techniques similar to those 
developed in the two previous sections. For definiteness, let us consider again the case 
where e, is given by (2.12). and let us write Go(x,y) for G(x,y )  and QM(& x,y) for 
its Mth remainder. Using (2.10) in (l.4), one finds an asymptotic expansion for 
QM(P,  x, Y ) :  

m 

Q d P ,  x, Y ) -  (2572)-1/2 Re C (G,P,+zP+, +H,~,+zP+,) .  (4.1) 
,=0 

Here the first G, and H, are 

Go = H a =  1 

G, = (x + y ) /  16i 

and E,  and C, denote the 'auxiliary series' 

G, = H ,  = O  Gz= H2 = (x2+y2)/16 
(4.2) 

H3= (x-y)/16i 

m 

exp{-i[p(&, x)+~(+i,~)l} (4.3) E , =  1 m - -? /2( -  I )" 
m = M  

By (2.11), the expansion (4.1) is valid for 

M >> 1, x2/4, y2/4. (4.5) 

To derive an asymptotic expansion for E,, analogous to (3.19), one can proceed 
in complete analogy with the treatment given for the series A,. Defining a function 



= 7P2+iO(E,  i, x, y )  (4.7) 

where the first coefficients 7j are 

q = i (x+y)+ E 7I = (x'+ y3)/24i + e l ,  (4.8) 

and O ( e , i ,  x , y ) + O  as 1". Applying Poisson's formula to the function g, we can 
modify slightly the asymptotic arguments of section 3 to get the result 

(- 1 )"' exp{- *) - i b (  *, x )  + P (  *, Y 11) z *U2 
",=M 

When E = 0, the above expansion is asymptotic to the (A, A,,,) sum of 8,. In table 3, 
this expansion is employed to evaluate B3 for x = 6, y = 4, M = 27. The direct summation 
of (4.3) u p  to m =, 1098 gives the approximate value B, -0.003 265-0.002 419i. 

Table 3. Computation o f  B, for x = 6, y = 4, M = 27, using (4.9) with E = 0. The meaning 
of each row is the same as in table 1. 

k Value o f  (4.9) 

0 -0.003 424-0.000 544i 
1 -0.003 165-0.002 176i 
2 -0.003 258-0.002 I9li 
3 -0.003 228-0.002 384i 
4 -0.003 256-0.002 389i 

The auxiliary series C, can also be evaluated with the Poisson summation formula, 
but the argument here is more subtle, as we shall see shortly. Defining the function 
h ( ! )  by 

(4.10) 
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with E > 0 and 5( i )  again given by ( 3 . 9 ,  we can write 

= g F 2 +  i o (  E, i, x, y )  

where the first coefficients 6 are 

5 = i(x - y ) +  E 

and O ( E ,  ( x , y ) + O  as f+m.  

&=(x3-y3)/24i+ EL, 

The series 
m 

1 f i ~ ' i 2 e x p { - ~ L ( ~ ) - i [ p ( , f i , x ) - ~ ( k , y ) l )  
m = M  

(4.11) 

(4.12) 

m 

= fi?2exp[-g6"2-iW(E, k , x , y ) ]  
,=.U 

m 

= d, exp(-&ii1i2) = D(5)  (4.13) 
m = M  

can be regarded as a Dirichlet series, whose abscissa of convergence 6 is obviously 
zero. Since arg d, + 0 as m + 00, it follows that 5 = 6 = 0 is a point of non-continuability 
of the Taylor expansion of D ( f )  with centre at any point in the half-plane Re 510 
(Saks and Zygmund 1971). This implies that the Abelian sum of C, (and therefore 
that of G , ( x , y ) )  may be non-analytic at x = y .  This is in contrast to the series B,, 
which by (4.9) is an analytic function of (x, y )  for all r. In fact, we shall see below 
that, for all r, C, is analytic everywhere except for x = y .  

Proceeding with the asymptotic caicuiation of C,, the Fourier transform of h i r )  
can be written as 

A 

SI-' exp{-2ninr2-~{(s2)-i[p(s2, x) - p ( s 2 , y ) ] )  ds (4.14) 

where s = i l l2 .  Now, it can be verified using (3.10) that for small E the term -2nins' 
will be dominant in the exponential in (4.14), but only for n # 0. In th) case, one can 
use integration by parts to determine the asymptotic behaviour of h,, exactly as in 
section 3. The result is an expansion identical to (3.17), wherein the leading factor i M  
is dropped, and the replacements 

hn=2(-1)" r fil'i  

[ ~ ( l l j ~ ~ ) , ~ , y , y ,  ,... 1+[~(hix)-p(fi,~),n,g,6,,...1 
are made. Using the well known sums 

m 7r4 - n2 1 n - 4 = -  
m 1 n 2 = -  

" = I  6 " = I  90 

one easily verifies that 

(4.15) 

(4.16) 
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The term 

SI-' exp[-@-io(&, s2, x, y)] ds  (4.17) 

will give rise to the non-analytic behaviour of C, at x = y ,  and must be treated separately. 
If we take (4.5) to mean 

A 1- GI,* 
h,=2 

M P K max(1, x2/4, y2/4} (4.18) 

with K > 1 a constant, then for i M we have the estimate 

S[l-(l - K - l ) q X I  (4.19) 

where 

x = $f'/2g, (4.20) 

Thus, for 1x1 bounded we can evaluate in numerically from the convergent expansion 

m m 

h, = 2 e-<' 2 q,s-"-'+' ds = 2 q.5'+r-2r(2 - n - r, X )  (4.21) 
n=o 

where ria, X-j denotes the incompiete gamma function (ABramOWitZ and Stegun i965j 
and the q. are the coefficients in the expansion of e-'" in powers of s-' (see (4.11)), 
listed in the appendix. From the properties of T(a,  X) ,  it can be shown that each term 
of (4.21) is non-analytic at 5 = 0, in accordance with a previous remark in this section. 
For simplicity, we will discuss only the case where 2p is an integer, so that by (4.1) 
we need only consider the C, for integer r. To evaluate (4.21). we may then note that 
T(a, X )  is given in terms of elementary functions for a = 1.2,. . . ; that r(0, X )  = El(X) ,  
the exponential integral; and that the T(a, X), a = -1, -2 , .  . . , may be obtained from 
r(0, X )  by the recurrence relation 

r ( a - i , x ) = ( a - i ) - ' [ r ( a ,  x ) - x " - ' ~ - ~ ] .  (4.22) 

The exponential integral is easily evaluated with a computer (see the appendjx). Based 
on numericai experimenis with (4.Z j, we have verified ihai we can compuie ha accurate 
to a few per centfor 1x1 s 25 when the expansion is truncated at n = 10. 

To compute ha when X is large, we may use the following asymptotic expansion, 
which follows from (4.17) by iterated integration by parts (Olver 1974): 

l ; , -ze-X m ..$-"-I- J" exp[-io(e,s2,x,y)] 
n=n as" S'-' ,=fiZI' 

(4.23) 

When IXI=25,  we have verified the numerical agreement between this expansion 
truncated at n = 3 and (4.21) truncated at n = 10. For 1x1 > 25, h, can be computed 
with an accuracy of a few per cent by using (4.23) with the indicated truncation. 
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Substituting (4.10) and (4.16) in Poisson's formula, we get finally 

exp{-d(G)-i[dfi ,  X ) - P ( ~ ~ , Y ) I )  1 fi r / 2  

exp{-&L(fi)-i[dfi, x ) - d f i ,  Y ) I }  
2Gi'12 

-Lo+ 
m = M  

921 

(4.24) 

where Lo may be computed from (4.21) or (4.23). depending on the value of 1x1. The 
Abelian sum C, is then given asymptotically by (4.24) with E = 0. 

We can use (4.21) and (4.24) to find the behaviour of G p ( x ,  y )  as x + y. For instance, 
when p = 1/2, we have 

Ji Re C,+O( 1)  --Re r(0, X)+O(  1)  

In Ix-yl+O(l) (4.25) R e I n X + O ( I ) -  -- 

because r(0, X )  = E,(X) behaves as -In X as X + 0. Thus, we conclude that G,/,(x, y)  
has a logarithmic singularity at x = y. 

We may compare (4.21), (4.23) and (4.24) with the expansion that would result 
from the application of Wimp's method to the series C,. Setting 

a QM(1/2, x , y ) - -  
574 

a a - -- 
a 7s 

&, =~?'/~exp{-i[p(fi ,  x ) - - p ( G , y ) l )  
d ,  = fi-"exp{-i[p(fi, x ) - p ( & , y ) ] } ( K b +  K l f i - ' / ' + .  . .) (4.26) 

in (1.6) and determining Wand KL,  it is easy to see from (4.11) that O ' =  ( r -  1)/2 and 
that KL willjnvolve terms proportional to (x- y)-"-' .  In fact, Wimp's method yields 
(4.24) with ho given by (4.23), and thus it fails to describe the behaviour of C, (and 
hence of G p ( x , y ) )  as x + y ,  which is given by (4.21) and (4.24). 

Table 4 illustrates the numerical use of (4.24) with r = 3, x = 3, y = -2 and M = 7. 
For comparison, the direct summation of (4.4) up to m =6201 gives C,-  
0.001 81 -0.055 84i. In table 5 we use (4.11, (4.9) and (4.24) to compute G , / 2 ( ~ , y )  for 
x = 1 and y = -1/2. The first row of the table gives the Mth partial sum of (1.4), and 
the other rows give the effect of adding the terms j = 0, 1,2 ,3  of (4.1). Just as was done 
for the example of table 2(a), we can argue that G,/,(x, y )  is conditionally convergent. 
Numerical tests of (4.24) indicate that the constant K in (4.18) should be at least 3 in 
order to produce results with a relative error of a few per cent. 

Table 4. Computation of C, for x = 3, y = -2. M = 7, using (4.24) with E = 0. The fin1 row 
gives the value of h,. and the meaning of the other raws is as in table 1. 

k Value of (4.24) 

fi,=-O.OZl46-0.04548i 
0 -0.OOOY7-0.05863i 
1 0.o01 03-0.055 j i i  
2 0.001 71  -0.055 Y6i 
3 0.001 82-0.055 7Yi 
4 0.001 86-0.055 81i  



922 P R Holvorcem 

Table 5. Asymptotic evaluation of G,,2(I, -l/2), using two different truncations. See text 
for the meaning of each row. 

M 3 IO 

Partial sum 0.4152 0.1835 
j = O , l  0.2752 0.2126 
j = 2  0.2718 0.2731 
j=j 0.Ziii  0.2132 

The main restriction on the use of (4.1) to the evaluation of G,(x, y )  occurs when 
I x -y l  +Co. In this case, G,(x, y )  tends to zero very rapidly, while the series (1.4) may 
diverge or converge slowly. Therefore, the Mth partial sum of (1.4) (and also the 
remainder OM@, x, y ) )  will be much larger than the sum itself, resulting in a large 
relative error in the computed G,(x, y )  due to cancellation. Of course, this effect is 
inherent in any method of summation which evaluates Go(& y )  as a partial sum plus 
an approximate remainder. Thus, a computed G , ( x , y )  which is less than a few per 
cent of the Mth partial sum of (1.4) is likely to he affected by cancellation, since our 
asymptotic expansions usually give B, and C, accurate to a few per cent. This problem 

G,(X, y )  tends to zero. 
The cancellation effect is more severe for the series G,(x, y) with p = 0, -1, -2,. . . , 

because the completeness of the Hermite functions implies that Go(x, y )  =&(x - y ) ,  
and 

does nat ncccr with the series (2.!4), since !=&! decays or graws more s!nw!y than 

y )  satisfies the inhomogeneous parabolic cylinder equation (Olver 1974) 

(4.27) 

Thus, G,(x, y )  = 0 for x # y and p = 0, -1, -2,. . . , so that asymptotic summation is 
not needed in these cases. When p = n = 1,2,. . . we can give a closed-form expression 
for G.(x, y), which turns out to be too cumbersome for numerical use when n > 1. 
Consider the meromorphic function 

p.(w) = ( -w)-nr(w+ 1/2) wW, x ) u ( ~ ,  - y )  (4.28) 

which has poles at w = 0 and w = -( m + 1/2), m = 0, 1 ,2 , .  . . . The asymptotic behaviour 
of p . ( w )  for large w can he shown to be (Olver 1959) 

p.(w) - (-1)"(Tr/2)'/2w-"-1/2 exp[ - (x -y )~"~]  

p,(w) - ( T/E)~ /~ ( -W)-" -~ '~  

larg wI c 7r/2 

C O S [ T ( W +  1/2) f2+ (-w)"2x] COS[T(W+ 1/2)/2- (-w)"2yl 
X 

sin[r(w+1/2)] 

larg(-w)/ < r / 2 .  (4.29) 

If x > y9 we can then assert that the sum of the residues of p.( w )  vanishes, which yields 
immediately an expression for G.(x, y): 



Asymptotic summation of Hermite series 923 

When x + m  and y is held fixed, we have U ( W , X ) - X ~ " ~ " ~ ~ ~ ~ ~ ~ ~ [ ~ + O ( X ~ ~ ) ~  
(Abramowitz and Stegun 1965), which implies that 

(4.31) 

This expression, though not accurate enough for numerical use, indicates that G.(x, y )  
tends to zero faster than any Hermite function Jl,(x/fi) as x + 00, so that it is not a 
surprise that cancellation should take place in this limit. 

Finally, we wish to comment that the methods of this paper may be used to evaluate 
any derivative of the series F ( x )  and G(x,y). In fact, the derivative of the Hermite 
function of order m has the asymptotic expansion 

which follows by differentiation of (2.10). From this expansion and (2.10) one can 
derive, as in section 2 and in this section, expansions for the remainders of 
dF6/d.x, 3GF/3.x, etc. In terms cf the zuxi!izry series A,, E,  2.4 C,. 

I 

Appendix I 
Here we give expressions for the first coefficients q. which appear in (4.21), and discuss 
a simple numerical procedure for the computation of the exponential integral E,(X). 

The coefficients q. are defined by the relation 

m (-X)" E,(X)=-InX-y- - 
( n ! ) n  (A.3) 
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where y is Euler's constant, or from the continued fraction 

.e-X 1 1 2 2 k k  
x+ 1+ Xf 1+ x+ " ' 1 +  X+"' 

E , ( X )  =_---_ _ _  (A.4) 

which is valid for (arg XI < T. (This condition is satisfied, since Re X = Re 5 = 
f i ' I 2 s  > 0.) By numerical experimentation with both representations, we found that a 
uniform accuracy (relative error less than 1%) may be achieved for Re X 2 0 by using 
(A.3) truncated at n = 5 when 1x1 < 0.4, and (A.4) truncated at k = 30 when 1x1 > 0.4. 
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